Datasets / Nano-Particle Scandate Cathode for Space Communications Phase 2 Project


Nano-Particle Scandate Cathode for Space Communications Phase 2 Project

Published By National Aeronautics and Space Administration

Issued about 9 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

We propose an improved cathode based on our novel theory of the role of scandium oxide in enhancing emission in tungsten-impregnated cathodes. Recent results have demonstrated the efficacy of nano-particle scandium oxide, but a detailed theory on the mechanism of operation has been lacking. Our theory explains published data and points to an optimized cathode, which we propose here to build and test. The cathode is the performance-limiting component in high-frequency linear beam amplifiers such as traveling wave tubes and klystrons. The required bandwidth, data rate, number of channels, frequency, and output power are going up. The performance of linear beam amplifiers is acutely limited by current cathode performance. Scandate cathodes offer a way to increase top emission from 10 A/cm2 to at least 50 A/cm2. Phase I proved the feasibility of applying layers on unagglomerated scandium oxide on impregnated cathodes. Phase II will optimize, test, and commercialize the process.