NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Honolulu Weather Forecast Office (HFO WFO) - Hawaii Island
Published By National Oceanic and Atmospheric Administration, Department of Commerce
Issued about 9 years ago
Summary
Description
These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer called the Sea Level Rise and Coastal Flooding Impacts Viewer. It depicts potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise (SLR) and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The Sea Level Rise and Coastal Flooding Impacts Viewer may be accessed at: http://www.coast.noaa.gov/slr This metadata record describes the Honolulu Weather Forecast Office (HFO WFO) digital elevation model (DEM), which is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea Level Rise and Coastal Flooding Impacts Viewer described above. The DEMs created for this project were developed using the NOAA National Weather Service's Weather Forecast Office (WFO) boundaries. This DEM includes the best available lidar known to exist at the time of DEM creation that met project specifications for the Honolulu WFO, which includes the following islands in Hawaii: Kauai, Oahu, Molokai, Maui, Lanai, and Hawaii. The DEM is derived from multiple sources. 1. 2006 Hawaii FEMA Lidar - acquired by FEMA along south shores of islands 2. 2007 USACE Pacific Islands Lidar: Hawaiian Islands - acquired by USACE and Hawaii State Civil Defense along north and windward facing shores of islands Hydrographic breaklines were delineated from LiDAR intensity imagery generated from the LiDAR datasets. The final DEM is hydro flattened such that water elevations are less than or equal to -0.5 meters. The DEM is referenced vertically to the Local Mean Sea Level (LMSL) tidal datum with vertical units of meters and horizontally to the North American Datum of 1983 (NAD83). The resolution of the DEM is 3 meters.