Datasets / CZCSL3B8D


CZCSL3B8D

Published By National Aeronautics and Space Administration

Issued about 9 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

The Coastal Zone Color Scanner Experiment (CZCS) was the first instrument devoted to the measurement of ocean color and flown on a spacecraft. Although other instruments flown on other spacecraft had sensed ocean color, their spectral bands, spatial resolution and dynamic range were optimized for land or meteorological use and had limited sensitivity in this area, whereas in CZCS, every parameter was optimized for use over water to the exclusion of any other type of sensing. CZCS had six spectral bands, four of which were used primarily for ocean color. These were of a 20 nanometer bandwidth centered at 443, 520, 550, and 670 nm. Band 5 had a 100 nm bandwidth centered at 750 nm and a dynamic range more suited to land. Band 6 operated in the 10.5 to 12.5 micrometer region and sensed emitted thermal radiance for derivation of equivalent black body temperature. (This thermal band failed within the first year of the mission, and so was not used in the global processing effort.) Bands 1-4 were preset to view water only and saturated when the IFOV was over most types of land surfaces, or clouds. The most important objective of the Coastal Zone Color Scanner mission was to determine if satellite remote sensing of color could be used to identify and quantify material suspended or dissolved in ocean waters. Specifically CZCS attempted to discriminate between organic and inorganic materials in the water, determine the quantity of material and discriminate between different organic particulate types. This product contains composite eight day Level-3 binned (Equal-Area Sinusoidal grid) data products in three variants: CHL- which includes chlorophyll a, KD490 - which includes diffuse attenuation at 490nm and RRS which includes the remote sensing reflectance in the visible bands, aerosol optical depth at 670nm and aerosol angstrom parameter.