Datasets / Global Forest Ecosystem Structure and Function Data For Carbon Balance Research


Global Forest Ecosystem Structure and Function Data For Carbon Balance Research

Published By National Aeronautics and Space Administration

Issued about 9 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

ABSTRACT: A comprehensive global database has been assembled to quantify CO2 fluxes and pathways across different levels of integration (from photosynthesis up to net ecosystem production) in forest ecosystems. The database fills an important gap for model calibration, model validation, and hypothesis testing at global and regional scales. The database archive includes: a Microsoft Office Access Database; data files for all tables in the database; query outputs from the database; and SQL script file for re-creating the database from the tables. The database is structured by site (i.e., a forest or stand of known geographical location, biome, species composition, and management regime). It contains carbon budget variables (fluxes and stocks), ecosystem traits (standing biomass, leaf area index, age), and ancillary information (management regime, climate, soil characteristics) for 529 sites from eight forest biomes. Data entries originated from peer-reviewed literature and personal communications with researchers involved in Fluxnet. Flux estimates were included in the database when they were based on direct measurements (e.g., tower-based eddy covariance system measurements), derived from single or multiple direct measurements, or modeled. Stand description was based on observed values, and climatic description was based on the CRU data set and ORCHIDEE model output. Uncertainty for each carbon balance component in the database was estimated in a uniformed way by expert judgment. Robustness of CO2 balances was tested, and closure terms were introduced as a numerical way to approach data quality and flux uncertainty at the biome level.