Datasets / Base of principal aquifer boundary for portions of the North Platte, South Platte, and Twin Platte Natural Resources Districts, western Nebraska


Base of principal aquifer boundary for portions of the North Platte, South Platte, and Twin Platte Natural Resources Districts, western Nebraska

Published By U.S. Geological Survey, Department of the Interior

Issued about 9 years ago

US
beta

Summary

Type of release
ongoing release of a series of related datasets

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

The U.S. Geological Survey and its partners have collaborated to complete airborne geophysical surveys for areas of the North and South Platte River valleys and Lodgepole Creek in western Nebraska. The objective of the surveys was to map the aquifers and bedrock topography of selected areas to help improve the understanding of groundwater-surface-water relationships to be used in water management decisions. Frequency-domain (2008 and 2009) and time-domain (2010) helicopter electromagnetic surveys were completed, using a unique survey flight line design, to collect resistivity data that can be related to lithologic information for refinement of groundwater model inputs. To make the geophysical data useful for multidimensional groundwater models, numerical inversion is necessary to convert the measured data into a depth-dependent subsurface resistivity model. This inversion model, in conjunction with sensitivity analysis, geological ground truth (boreholes), and geological interpretation, is used to characterize hydrogeologic features. The two- and three- dimensional interpretation provides the groundwater modeler with a high-resolution hydrogeologic framework and a quantitative estimate of framework uncertainty. This method of creating hydrogeologic frameworks improved the understanding of the actual flow path orientation by redefining the location of the paleochannels and associated bedrock highs. The improved models represent the hydrogeology at a level of accuracy not achievable using previous data sets.