Published By National Aeronautics and Space Administration
Issued over 9 years ago
Summary
Description
Studying the isotopic composition of materials is an established method to obtain detailed insight into formation and evolution processes in our Universe. Water may play a dominant role in unraveling these processes. Isotope hydrology applied in situ on the Moon and other planets might develop into the key method to understand the history of our Solar system. The Moon provides unique opportunities to study trapped volatile compounds, like water, due to the special conditions at its poles. These conditions enable the long term storage of volatiles and preservation of their isotopic composition. A compact, precise isotope hygrometer operated on the Moon will be an invaluable tool if abundant water sources are found on the Moon in upcoming missions. This project seeks to develop a highly sensitive, portable water isotope ratiometer for precisely measuring water samples in situ on the Moon. The optical sensors developed on this project will have unique features including fast response, high precision and strong species selectivity. Design criteria such as a small footprint, low weight, low power consumption and continuous sensor health monitoring will be implemented to optimize the sensors for application to the Moon. An absorption approach using modulation techniques will be implemented on a lunar mission suitable platform.