Datasets / Investigation of Nanometal/Carbon Fiber Composite Structures for Use in Novel Lightweight Cryotank Designs Project


Investigation of Nanometal/Carbon Fiber Composite Structures for Use in Novel Lightweight Cryotank Designs Project

Published By National Aeronautics and Space Administration

Issued over 9 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

This proposal seeks to investigate the use of a novel high strength nanostructured metal (Nanovate<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <sup>TM</sup> ) as a thin structural reinforcing shell on ultra-lightweight carbon fiber reinforced plastic (CFRP) propellant and cryogenic storage tanks. In the proposed project, Integran seeks to address the intrinsic deficiencies of CFRP by applying nanometal to the inside liner of the CFRP cryogenic storage tanks to provide a high strength pressure barrier with excellent mechanical performance and damage tolerance at cryogenic temperatures, thereby enabling the use of CFRP for cryogenic storage tanks. In addition, the nanometal liner will also provide increased surface durability, wear resistance and specific strength/stiffness of the CFRP substructure at cryogenic, ambient and elevated temperatures (temperatures at which conventional composites begin to soften). The high strength of the nanostructured material will allow a thin structural reinforcing coating, thus maintaining the overall lightweight nature of the component. The successful execution of this project will provide a proof-of-concept demonstration as well as baseline mechanical property data for nanometal/composite hybrid structures at a range of temperatures, thereby allowing engineering designers to incorporate the use of these structures into advanced engineering components, including cryogenic storage tanks.