Datasets / A Turbo-Brayton Cryocooler for Aircraft Superconducting Systems Project


A Turbo-Brayton Cryocooler for Aircraft Superconducting Systems Project

Published By National Aeronautics and Space Administration

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

Hybrid turboelectric aircraft with gas turbines driving electric generators connected to electric propulsion motors have the potential to transform the aircraft design space by decoupling power generation from propulsion. Resulting aircraft designs such as blended-wing bodies with distributed propulsion can provide the large reductions in emissions, fuel burn, and noise required to make air transportation growth projections sustainable. The power density requirements for these electric machines can only be achieved with superconductors, which in turn require lightweight, high-capacity cryocoolers. We have developed a Cryoflight turbo-Brayton cryocooler concept that exceeds the mass and performance targets identified by NASA for superconducting aircraft. In Phase I of this project, we extended our initial design study and developed modeling tools to support system-level optimization and individual component designs. We focused on the critical component for mass reduction – the recuperative heat exchanger – and performed risk reduction activities to demonstrate the feasibility of our concept for this component. In Phase II, we will design, build, and test two compact lightweight, high-performance recuperators for the Cryoflight cryocooler. This development effort will provide an enabling technology for the superconducting systems needed for hybrid turboelectric aircraft to be feasible.