Datasets


Published By National Aeronautics and Space Administration

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth is timed so that it passes from north to south across the equator in the morning, while Aqua passes south to north over the equator in the afternoon. Terra MODIS and Aqua MODIS are viewing the entire Earth's surface every 1 to 2 days, acquiring data in 36 spectral bands, or groups of wavelengths (see MODIS Technical Specifications). These data will improve our understanding of global dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere. MODIS is playing a vital role in the development of validated, global, interactive Earth system models able to predict global change accurately enough to assist policy makers in making sound decisions concerning the protection of our environment.


Published By National Aeronautics and Space Administration

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

This data set contains surface roughness data collected at several agricultural sites as a part of the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12).


Published By National Aeronautics and Space Administration

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

ABSTRACT: Above and below ground productivity of a native C3 grassland and an introduced C4 grassland were studied from 1973-1974 near Charleville in Southern Queensland, northeast Australia.


Published By National Aeronautics and Space Administration

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

This dataset is part of the collection of Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager Sounder (SSMIS) data products produced as part of NASA's MEaSUREs Program. Remote Sensing Systems generates SSM/I and SSMIS binary data products using a unified, physically based algorithm to simultaneously retrieve ocean wind speed (at 10 meters), water vapor, cloud water, and rain rate. The SSMIS data have been carefully intercalibrated on the brightness temperature level with the previous SSM/I and therefore extend this important time series of ocean winds, vapor, cloud and rain values. This algorithm is a product of 20 years of refinements, improvements, and verifications. The Global Hydrology Resource Center has reformatted the binary data into a netCDF data product for each temporal group for each satellite. The netCDF SSMI/SSMIS collection will be available for F8, F10, F11, F13, F14, F15, F16, F17 for each temporal aggregation: daily, 3-day, weekly and monthly.


Published By National Aeronautics and Space Administration

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

Case studies illustrate the kinds of decisions and dilemmas managers face every day, and as such provide an effective learning tool for project management. Due to the dynamic and complex environment of projects, a great deal of project management knowledge is tacit and hard to formalize. A case study captures the complex nature of a project and identifies key decision points, allowing the reader an inside look at the project from a practitioner’s point of view.


Published By National Aeronautics and Space Administration

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

MODIS/Terra+Aqua BRDF/Albedo Model Parameters 16-Day L3 Global 500m SIN Grid


Published By National Aeronautics and Space Administration

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth is timed so that it passes from north to south across the equator in the morning, while Aqua passes south to north over the equator in the afternoon. Terra MODIS and Aqua MODIS are viewing the entire Earth's surface every 1 to 2 days, acquiring data in 36 spectral bands, or groups of wavelengths (see MODIS Technical Specifications). These data will improve our understanding of global dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere. MODIS is playing a vital role in the development of validated, global, interactive Earth system models able to predict global change accurately enough to assist policy makers in making sound decisions concerning the protection of our environment.


Published By National Aeronautics and Space Administration

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth is timed so that it passes from north to south across the equator in the morning, while Aqua passes south to north over the equator in the afternoon. Terra MODIS and Aqua MODIS are viewing the entire Earth's surface every 1 to 2 days, acquiring data in 36 spectral bands, or groups of wavelengths (see MODIS Technical Specifications). These data will improve our understanding of global dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere. MODIS is playing a vital role in the development of validated, global, interactive Earth system models able to predict global change accurately enough to assist policy makers in making sound decisions concerning the protection of our environment.


Published By National Aeronautics and Space Administration

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

Version 2.0 Aquarius Level 3 sea surface salinity (SSS) standard mapped Monthly image data


Published By National Aeronautics and Space Administration

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth is timed so that it passes from north to south across the equator in the morning, while Aqua passes south to north over the equator in the afternoon. Terra MODIS and Aqua MODIS are viewing the entire Earth's surface every 1 to 2 days, acquiring data in 36 spectral bands, or groups of wavelengths (see MODIS Technical Specifications). These data will improve our understanding of global dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere. MODIS is playing a vital role in the development of validated, global, interactive Earth system models able to predict global change accurately enough to assist policy makers in making sound decisions concerning the protection of our environment.


Published By US Fish and Wildlife Service, Department of the Interior

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

The purpose of this report is to create a baseline inventory of all nonmotorized trails on Big Stone National Wildlife Refuge. Trails in this inventory are eligible for funding under the Refuge Roads Program SAFETEALU. The report describes all the attributes e.g., location, surface type, condition, distance of trails in the FWS asset inventory.


Published By National Aeronautics and Space Administration

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

Hot Corrosion of turbine engine components has been studied for many years. The underlying mechan-isms of Type I Hot Corrosion and Type II Hot Corrosion are increasingly well-understood. Nickel-based superalloys have shown strong resistance to high temperature oxidation attack and, of course, excellent high temperature strength. Modern turbine engine designs that seek to achieve better fuel efficiency in part by increasing turbine inlet temperatures are strong candidates for nickel-based superalloy turbine disk materials. As disk temperatures approach 700C, designers must consider the likelihood and effects of Type II corrosion. Type II corrosion is typically characterized by localized corrosion pitting caused by melting of sulfur-containing salts. Type II hot corrosion pits have been shown to decrease the fatigue resistance of superalloys due to initiation of fatigue cracks at hot corrosion pits. However, the rigorous analytical models and tools needed by turbine engine designers to predict Type II corrosion pit formation and fatigue life degradation due to corrosion pits are not currently available. Barron Associates, Inc. and its research partners propose to develop corrosion pitting and fatigue life models for nickel-based superalloys subjected to Type II hot corrosion. The models will be commercia-lized and made available to the research and development community.


Published By National Aeronautics and Space Administration

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

The SeaWiFS instrument was launched by Orbital Sciences Corporation on the OrbView-2 (a.k.a. SeaStar) satellite in August 1997, and collected data from September 1997 until the end of mission in December 2010. SeaWiFS had 8 spectral bands from 412 to 865 nm. It collected global data at 4 km resolution, and local data (limited onboard storage and direct broadcast) at 1 km. The mission and sensor were optimized for ocean color measurements, with a local noon (descending) equator crossing time orbit, fore-and-aft tilt capability, full dynamic range, and low polarization sensitivity.


Published By US Fish and Wildlife Service, Department of the Interior

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

Onemetersquare 1 meter x 1 meter benthic substrate at French Frigate Shoals, site P12 23.871N, 166.281 W, between 33 and 34 meters along a permanent transect.


Published By National Aeronautics and Space Administration

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

The GPM Ground Validation NASA S-Band Dual Polarimetric (NPOL) Doppler Radar IFloods V2 data set was collected from April 30, 2013 to June 16, 2013 near Traer, Iowa as a part of the Global Precipitation Measurement Mission (GPM) Iowa Flood Studies (IFloodS) campaign. The NASA NPOL radar, developed by a research team from Wallops Flight Facility, is a fully transportable and self-contained S-band (10 cm), scanning dual-polarimetric, Doppler research radar that collected and operated nearly continuously during the IFloodS field campaign. The GPM Ground Validation NASA S-Band Dual Polarimetric (NPOL) Doppler Radar IFloodS V2 data is available in Universal [Radar] Format (UF).


Published By National Aeronautics and Space Administration

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth is timed so that it passes from north to south across the equator in the morning, while Aqua passes south to north over the equator in the afternoon. Terra MODIS and Aqua MODIS are viewing the entire Earth's surface every 1 to 2 days, acquiring data in 36 spectral bands, or groups of wavelengths (see MODIS Technical Specifications). These data will improve our understanding of global dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere. MODIS is playing a vital role in the development of validated, global, interactive Earth system models able to predict global change accurately enough to assist policy makers in making sound decisions concerning the protection of our environment.


Published By U.S. Geological Survey, Department of the Interior

Issued almost 10 years ago

US
beta

Summary

Type of release
ongoing release of a series of related datasets

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

This spatial data set was created by the U.S. Geological Survey (USGS) to represent the area of soils with different levels of phosphorus retention potential in the Pacific Northwest region of the United States (Hydro Region 17; Major River Basin 7 (MRB7)) within each incremental watershed delineated in the NHDPlus v2 dataset.


Published By National Aeronautics and Space Administration

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

The OMI/Aura Level-2 Ozone Profile data product OMO3PR (Version 003) is now available ( http://disc.gsfc.nasa.gov/Aura/OMI/omo3pr_v003.shtml ) from the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) for the public access. OMI Level-2 ozone profile product, OMO3PR at the pixel resolution 13x 48 km (at nadir), is based on the optimal estimation algorithm (Rodgers, 2000) with climatological ozone profiles as a-priori information. The OMO3PR retrieval algorithm uses spectral radiance values from the UV1 channel (270 nm to 308.5 nm) and from the first part of the UV2 channel (311.5 nm to 33 0 nm). OMO3PR product provides ozone values (in Dobson unit) for 18 atmospheric layers. It also provides a-priori ozone profile values, error covariance matrix, averaging kernel and some ancillary information such as time, latitude, longitude, solar zenith and viewing zenith angles and quality flags . (The short name for this Level-2 OMI ozone profile product is OMO3PR) The lead scientist for this product is Dr. Johan de Haan (johan.de.haan@knmi.nl). OMO3PR product files are stored in Hierarchical Data Format (HDF-EOS5 ). Each file contains data from the day lit portion of an orbit (approx 53 minutes). There are approximately 14 orbits per day thus the total data volume is approximately 150 GB/day. A list of tools for browsing and extracting data from these files can be found at: http://disc.gsfc.nasa.gov/Aura/tools.shtml A 'Readme' document containing brief algorithm description and known data quality related issues and file spec are provided by the OMO3PR algorithm lead (see http://disc.gsfc.nasa.gov/Aura/OMI/omo3pr_v003.shtml ).


Published By National Aeronautics and Space Administration

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

The MODIS (Moderate Resolution Imaging Spectroradiometer) Atmosphere Group develops remote sensing algorithms for deriving sets of atmospheric parameters from MODIS radiance data. These parameters can be integrated into conceptual and predictive global models. MODIS Atmosphere Products Subset Statistics (MAPSS) are generated over important locations around the world, as one of the ways to increase the scope of application of the MODIS atmospheric parameters. This MAPSS data set contains daily time series of the MODIS MOD04_L2 aerosol product over seventeen (17) AERONET sunphotometer measurement sites in southern Africa for the period February 26, 2000, through December 31, 2001. The process of generating the statistics involves identifying these locations on the MODIS MOD04_L2 product, extracting the values of the pixel corresponding to each coordinate point as well as surrounding pixels falling within a 50 x 50 km box centered on the coordinate point. The data files are stored as ASCII tables in comma-separated-value (.csv) format. There is one file per site per year for each of the following variables: cloud fraction (land); cloud fraction (ocean); particle effective radius (ocean); optical depth (land and ocean); optical depth (land, corrected); optical depth (ocean, effective average); and optical depth ratio (small ocean).


Published By National Aeronautics and Space Administration

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth is timed so that it passes from north to south across the equator in the morning, while Aqua passes south to north over the equator in the afternoon. Terra MODIS and Aqua MODIS are viewing the entire Earth's surface every 1 to 2 days, acquiring data in 36 spectral bands, or groups of wavelengths (see MODIS Technical Specifications). These data will improve our understanding of global dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere. MODIS is playing a vital role in the development of validated, global, interactive Earth system models able to predict global change accurately enough to assist policy makers in making sound decisions concerning the protection of our environment.


Published By National Aeronautics and Space Administration

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

Radarsat-1 Low Incidence Data in ASF Frame Size Processed to Level 0


Published By National Aeronautics and Space Administration

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth is timed so that it passes from north to south across the equator in the morning, while Aqua passes south to north over the equator in the afternoon. Terra MODIS and Aqua MODIS are viewing the entire Earth's surface every 1 to 2 days, acquiring data in 36 spectral bands, or groups of wavelengths (see MODIS Technical Specifications). These data will improve our understanding of global dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere. MODIS is playing a vital role in the development of validated, global, interactive Earth system models able to predict global change accurately enough to assist policy makers in making sound decisions concerning the protection of our environment.


Published By National Aeronautics and Space Administration

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

All 1C products have a common L1C data structure, simple and generic. Each L1C swath includes scan time, latitude and longitude, scan status, quality, incidence angle, Sun glint angle, and the intercalibrated brightness temperature (Tc). One or more swaths are included in a product. The radiometer data are recalibrated to a common basis so that precipitation products derived from them are consistent. 1CMHS contains common calibrated brightness temperature from the MHS passive microwave instrument flown on the NOAA and METOPS satellites. Swath S1 is the only swath and has 5 channels (89.0GHzV, 157.0GHzV, 183.3GHz+/-250MHzH, 183.3GHz+/- 500MHzH, and 190.3 GHzV). MHS is very similar to AMSU-B. The scan period is 2.667s.The purpose of Level 1C algorithms is to provide common intercalibrated microwave brightness temperature (Tc) products for GPM core and constellation satellites using the GPM Microwave Imager (GMI) as the reference standard to ensure the consistency among global precipitation retrieval and climate studies. Current available L1C products are listed in the following table found in the document Introduction To Data Products ("http://pps.gsfc.nasa.gov/Documents/IntroductionToDataProducts.pdf")


Published By National Aeronautics and Space Administration

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

The Coastal Zone Color Scanner Experiment (CZCS) was the first instrument devoted to the measurement of ocean color and flown on a spacecraft. Although other instruments flown on other spacecraft had sensed ocean color, their spectral bands, spatial resolution and dynamic range were optimized for land or meteorological use and had limited sensitivity in this area, whereas in CZCS, every parameter was optimized for use over water to the exclusion of any other type of sensing. CZCS had six spectral bands, four of which were used primarily for ocean color. These were of a 20 nanometer bandwidth centered at 443, 520, 550, and 670 nm. Band 5 had a 100 nm bandwidth centered at 750 nm and a dynamic range more suited to land. Band 6 operated in the 10.5 to 12.5 micrometer region and sensed emitted thermal radiance for derivation of equivalent black body temperature. (This thermal band failed within the first year of the mission, and so was not used in the global processing effort.) Bands 1-4 were preset to view water only and saturated when the IFOV was over most types of land surfaces, or clouds.


Published By National Aeronautics and Space Administration

Issued almost 10 years ago

US
beta

Summary

Type of release
a one-off release of a single dataset

Data Licence
Not Applicable

Content Licence
Creative Commons CCZero

Verification
automatically awarded

Description

The CHILL radar data for the Midlatitude Continental Convective Clouds Experiment (MC3E) held in Oklahoma were collected while the NASA ER-2 aircraft conducted a series of four legs along the 090 and 120 degree CHILL azimuths on May 24, 2011. Dual linear polarization variables as well as Doppler velocity, radial velocity, and normalized coherent power are contained in this dataset. In an effort to expand the MC3E sampling to a wider geographical area, the NASA ER2 aircraft was directed to Northeastern Colorado while widespread rain was in progress on May 24 2011. The aircraft flew a series of pre-defined ground tracks that coincided with radials from the CSU-CHILL radar. This aided in keeping the aircraft in the plane of a series of RHI scans done by CSU-CHILL. The single polarization CSU-Pawnee radar maintained volume coverage of the echo system while the radial flight legs were in progress. During aircraft course reversals at the ends of the radial legs, the CHILL and Pawnee radars started volume scans in synchronization to support dual Doppler wind syntheses. CHILL and Pawnee radar data are available as separate datasets.