Bronze level automatically awarded US beta

This data has achieved Bronze level on 25 October 2015 which means this data makes a great start at the basics of publishing open data.

Approximate Cartesian Control for Robotic Tool Usage with Graceful Degradation Project


Description

Many of NASA's exploration scenarios include important roles for autonomous or partially autonomous robots. It is desirable for them to utilize human tools when possible, rather than needing to build custom tools for each robot. Control of robotic manipulators for tool usage generally requires a very precise Cartesian-space trajectory of the tool tip (e.g., moving a marker along the surface of a whiteboard or rotating a screwdriver about an axis). Well-known techniques exist for manipulator control in Cartesian space, most of which necessitate solving a series of Inverse Kinematics (IK) problems. Closed-form IK solvers work well for 7-degree-of-freedom (DOF) arms with rigid tool attachments, but cannot handle non-rigid tools that slip in the robot's hands. Numerical IK approaches are more generic and can handle non-rigid links to tools, but can be slow to converge. More importantly, if any joints fail or become limited in their range of motion, the robot arm essentially becomes 6-DOF or lower. IK solvers often fail in these lower DOF spaces because the configuration space becomes non-continuous and full of "holes". As a result, a 7-DOF robotic arm in space might be rendered largely useless if a single joint fails or even loses mobility until it can be serviced. TRACLabs proposes to investigate an alternative approach to traditional Cartesian control approaches, which rely on complex IK solvers that go from Cartesian space backwards to joint space. We propose to leverage cheap memory and modern processing speeds to instead perform simple computations that go from joint space forwards to Cartesian space. Such techniques should overcome common changes to a manipulation chain caused by tool slippage or the grasping of a new tool and to overcome uncommon changes to a chain caused by joint failures, reduced joint mobility, changes in joint geometry or range of motion, or added joints.


General Information


Legal Information

This dataset has been created by US Government which means it is required to be in the public domain. However US copyright law only allows open access by US citizens, we have assumed the data is equivalently licensed as CC0 for the rest of the world as this is in the spirit of the US Government’s Open Data policy.
  • The rights statement is at

    http://catalog.data.gov/dataset/approximate-cartesian-control-for-robotic-tool-usage-with-graceful-degradation-project Do you think this data is incorrect? Let us know

  • Outside the US, this data is available under

    Creative Commons CCZero Do you think this data is incorrect? Let us know

  • There are

    yes, and the rights are all held by the same person or organisation Do you think this data is incorrect? Let us know

  • The content is available under

    Creative Commons CCZero Do you think this data is incorrect? Let us know

  • The rights statement includes data about

    its data licence Do you think this data is incorrect? Let us know

  • This data contains

    no data about individuals Do you think this data is incorrect? Let us know


Practical Information

  • The data appears in this collection

    http://catalog.data.gov/organization/nasa-gov Do you think this data is incorrect? Let us know

  • The accuracy or relevance of this data will

    go out of date but it is timestamped Do you think this data is incorrect? Let us know

  • The data is

    backed up offsite Do you think this data is incorrect? Let us know


Technical Information

  • This data is published at

    http://techport.nasa.gov/xml-api/18212 Do you think this data is incorrect? Let us know

  • This data is

    machine-readable Do you think this data is incorrect? Let us know

  • The format of this data is

    a standard open format Do you think this data is incorrect? Let us know


Social Information

  • The documentation includes machine-readable data for

    title Do you think this data is incorrect? Let us know

  • The documentation includes machine-readable data for

    description Do you think this data is incorrect? Let us know

  • The documentation includes machine-readable data for

    identifier Do you think this data is incorrect? Let us know

  • The documentation includes machine-readable data for

    landing page Do you think this data is incorrect? Let us know

  • The documentation includes machine-readable data for

    publisher Do you think this data is incorrect? Let us know

  • The documentation includes machine-readable data for

    keyword(s) or tag(s) Do you think this data is incorrect? Let us know

  • The documentation includes machine-readable data for

    distribution(s) Do you think this data is incorrect? Let us know

  • The documentation includes machine-readable data for

    release date Do you think this data is incorrect? Let us know

  • The documentation includes machine-readable data for

    modification date Do you think this data is incorrect? Let us know

  • The documentation includes machine-readable data for

    temporal coverage Do you think this data is incorrect? Let us know

  • The documentation includes machine-readable data for

    language Do you think this data is incorrect? Let us know

  • The documentation about each distribution includes machine-readable data for

    release date Do you think this data is incorrect? Let us know

  • The documentation about each distribution includes machine-readable data for

    a URL to access the data Do you think this data is incorrect? Let us know

  • The documentation about each distribution includes machine-readable data for

    a URL to download the dataset Do you think this data is incorrect? Let us know

  • The documentation about each distribution includes machine-readable data for

    type of download media Do you think this data is incorrect? Let us know

  • Find out how to contact someone about this data at

    http://catalog.data.gov/dataset/approximate-cartesian-control-for-robotic-tool-usage-with-graceful-degradation-project Do you think this data is incorrect? Let us know

  • Find out how to suggest improvements to publication at

    http://www.data.gov/issue/?media_url=http://catalog.data.gov/dataset/approximate-cartesian-control-for-robotic-tool-usage-with-graceful-degradation-project Do you think this data is incorrect? Let us know